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ABSTRACT

This paper discusses infinite server queues whose input

is a Phase Type Renewal Process introduced by M. F. Neuts

(Renewal Processes of Phase Type, Nav. Res. Log. Quart,

forthcoming). The problems of obtaining the transient and
steady~state distributions and moments of the queue length
are reduced to the solution of certain well-behaved systems
of linear differential equations. Sample computations are
provided with as many as ten phases. The paper contains
some useful .explicit formulas and also discusses the
interesting special case where the service time is also of
phase type. The Phase Type Distributions include a wide
variety of models such as generalized Erlang, hyper-
exponential (mixtures of a finite number of exponentials)
as very special cases and possess great versatality in
modeling a number of interesting qualitative features such

as bimodality.
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CHAPTER 1
THE PH/G/« QUEUE

1.1 PH-Distributions and PH-Renewal Processes

The versatile class of probability distributions of

Phase Type (PH-distributions) which includes many well-

known models such as generalized Erlang, hyper-exponential
etc., as special cases was introduced by M. F. Neuts [5],
who, in a number »f follow-up papers (c.f. Bibliography in
[7]), also discussed their useful computational properties
in the analysis of queueing systems. In this paper we shall
exclusively deal with PH-distributions of continuous type
which are obtained as the distribution of the time till
absorption in an (m+1)-state continuous parameter Markov

chain with infinitesimal generator

IO

e

and initial probability vector (a, am+1), Ogum+1<1, where

T=(T1j) is a non-singular mxm matrix such that Tii<0 and

Tijgo for i#j, and T°>0 is an m-vector satisfying Te+T°=0,
where e'=(1,...,1). To avoid uninteresting complications,
we shall henceforth assume that am+]=0. It is now an easy

matter to see that such a PH-distribution has c.d.f.,




F(x)=1-aexp(Tx)e, x20. .50

3 Such a distribution is said to be of PH-type with a represens
i tation (a,T).
For technical reasons we may assume, without loss of
generality [5], that the conservative stable matrix Q*=T+T°A°, .

where A°=d1ag(a1,...,um) and T°=({T°,...,T°), is irreducible.

Example 1.1: The generalized Erlang distribution which is

the convolution of m independent exponential distributions

with parameters, say, Hp s eesMp respectively has a

representation
]

g_=(],0,- ao)

r by

-u] u] 0 ----- 0
0 'Hz }12 ..... 0

=
E 0 0 0 -umJ

Example 1.2: The hyper-exponential distribution (which is

f defined as a finite mixture of exponential distributions) is
of PH-type with a representation
g=(a~l 9 e yam).’ and T=d1'ag("u] 9 e o ,"um) 'Y

where Wyse.-shp are the parameters of the exponential

distributions forming the mixture and Gpseeesap are the

ratios governing the mixture.




In [6] Neuts discussed renewal processes where the

underlying distribution is of PH-type. The "PH-Renewal
Process" is obtained by considering the Markov Chain with
infinitesimal generator Q*=T+T°A° and initial probability
vector o, and a constructive definition of such a process is
that it is obtained by resetting the original Markov Chain Q
following each absorption (i.e., renewal) by performing a
multinomial trial with probabilities a. For such a PH-
Renewal Process, the times between successive renewals are
i.i.d., with c.d.f. F(-) given by (1.1.1) which is of Phase
Type.

For later use we let 6 denote the invariant probability
vector of the Markov Chain Q*, i.e., the unique (strictly

positive) vector satisfying
0Q*=0, ge=1.

We recall from [6] that the stationary version of the PH-
Renewal Process is obtained by starting the Markov Chain Q*
with initial probability vector 6. Also it is an easy
matter to verify that |

2-=-'A T-]’

1 =]

where A~ '=-aT 'e is the mean of the PH-distribution F(-)

given by (1.1.1). In the sequel we shall let © denote the

mxm matrix each of whose rows is 6.




1.2 The PH/G/= Queue

In this paper we consider a GI/G/= queue in which the
arrivals form a renewal process of Phase Type. Such a model
will be denoted by PH/G/~. We shall assume that the under-
lying PH-distribution F(+) has a representation (a,T)
satisfying the conditions set forth in Section 1.1. The
c.d.f. of the service time will be denoted by H(-.), and it

shall be assumed that the mean service time u=z {1-H(t)}dt<w,

For the PH/G/~ queue we show that the problems of
obtaining the transient (and steady-state) distributions and
moments of the queue length (i.e., the number of customers
in the system) can be reduced to the solution of certain
well-behaved systems of linear differential equations. By
applying a classical result on the asymptotic behavior of
linear systems of differential equations, we prove, under
the assumption u<w, the existence of a steady-state distri-
bution and obtain an explicit formula for the steady-state
mean queue length. By considering the special case where
H(¢) is discrete with a finite number of atoms, wé show that
in the general case there is no hope of solving these
differential equations explicitly in a computationally useful
form. Nevertheless, these systems of differential equations
can be solved numerically with considerable ease. We discuss
some aspects of such computations and present some sample
computations of the first four moments of the queue length

for models with as many as ten phases.




Our computational examples illustrate how sole reliance
on the mean queue length may result in serious errors in the
qualitative interpretation of the behavior of these
stochastic systems. They also enhance the importance of
algorithmic solutions using numerical methods to stochastic
models without which an in-depth analysis is seldom possible.

Finally, we discuss briefly the interesting subclass of
PH/PH/~ queues - i.e., PH/G/= queues where the service time
distribution is also of phase type - and in the course of the
discussion obtain an alternate proof of a theorem due to
Neuts and Jain [8] governing the independence of the number

of customers in the different phases of service in an M/PH/=

queue.




CHAPTER II

THE BASIC SYSTEM OF DIFFERENTIAL EQUATIONS
AND ITS ASYMPTOTIC BEHAVIOR

2.1 Introduction

For the PH/G/«= queue defined in Chapter I we let X(t)
denote the queue length (i.e., the number of customers in the
system) and J(t) the phase of the arrival process at time t+.
For k20, i,j=1,...,m we let

69 (£)=PLX(t)=k,0(t)=3|X(0)=0,3(0)=11, t30  (2.1.1)
and let Gk(t) denote the mxm matrix whose (i,j)-th entry is

G;J(t). We also define the generating function

26, (), |z]51, t20. (2.1.2)

o~ g

G(z,t)=
k

In section 2.2 we derive the system of linear differential
equations governing G(z,-) and call it the basic system of
differential equations for the PH/G/= queue. By considering
the case where the service time c.d.f. H(:) is concentrated
on a finite number of points, we show, in Section 2.3, that
the explicit solution to the basic system of differential
equations is of no use whatsoever for computational purposes
thereby suggesting that in the general case there is no hope

of obtaining a useful explicit formula for G(z,t) or its

Timit as tow,




Finally in Section 2.4 we apply a classical result on
the asymptotic behavior of linear systems of differential
equations to the basic system of the PH/G/~ queue and

establish (under our assumption that the mean service time

u<=) that the process (X(t),J(t)) is ergodic and has a steady

state distribution independent of the initial conditions.

Once again, we do not have an explicit formula for the limit.

2.2 The Basic System of Differential Equations

Let

Sn(t)={(u1....,u

n
nli u;20, ? ugstl, t20, n2l.

Also for (uy,...,u )eS (t), Oskgn, let gﬁk)(t;u],...,un)
denote the probability of obtaining exactly k successes in a
sequence of n independent Bernoullian trials with respective
probabilities of success l-ﬁ(t-u]), l—ﬂ(t-u]-uz), AR
1-H(t-uy=...-u ). Note that 1-H(t-uj-...-u;) is the
probability that aAcustomer who arrives at epoch u‘+...+u1
is still in the system at t.

In terms of the above notations we now have

Lemma 2.2.1:

For t>0,

Go(t)=exp(Tt)+

™8

s eXP(TU])'T°A°'....exp(Tun).T°A°.

¥ 8. 4¢t)

g n

exp{T(t-ur...-un)}g,(‘o)(t;u],...,un)du]...dun

0
T I, T I Ty [ A Iy v ar—
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Proof: The formulae above are got by conditioning on n, the

and for k21

Gk(t)=n

f exp(Tu])-T°A°-...exp(Tun)-T°A°-

ks, (t)

o™ 8

exp{T(t-u]-...-un)}g’(‘k)(t;u],...,un)du]...dun

number of arrivals in (0,t],and the arrival epochs Uys
Uptlys . oo Upheootup, and applying the law of total

probability.
We are now ready to state our basic result as

Theorem 2.2.2: For all teC(H), the set of continuity points

of A(-), and |z|<1, we have
gi-G(z,t)=[(T+T°A°)+(z-]){1-ﬁ(t)}T°A°}G(z,t) (2.2.3)
with the initial condition

G(z,0)=1 (2.2 .4)

Proof: (Throughout this proof we shall use prime to denote

derivatives with respect to t);

Noting that

n k (k) n % &
E z°g, (t;u],..,u )= q [H(t-u1-..-u1)+z{1-H(t-u]-..-ui)}],

k=0

we have from Lemma 2.2.1 that

k ©
G (t)= & C (2,t), 2.2.5
o K (t) A n(zst) ( )

G(z,t)=
k

™8

where

Co(z,t)=exp(Tt)




and for n2l

Cy(z5t)=

n b b
! {: i exp(Tu.)-T°A°-[H(t—u]-..—u1)+z{1-H(t-u]-..-ui)}i}~
s, (t) Li=1 !

exp[T(t-u]-..—un)]du]...dun

Now for n22,

t -
Cn(z,t)=f[}xp(Tu1)-T°A°-[H(t-u])+z{1—ﬂ(t-u])}]-
0

n
I T exp(Tu,) TOA®[A(t-uq~..-u )+

z{l-ﬁ(t-u]-..—ui)}] exp[T(t-uy-..-u )]

du2. y .dun] du]

t ~ ~
=6eXP(TU])'T°A°[H(t-u])+z{7-H(t-u])}]Cn_1(z.t-u])du]

t i : N
=sexp[T(t-t)]-T°A°[H(x)}+z{1-A(x)}]C _;(z,7)dx
0 =
or
t -
exp(-Tt)-Cn(z,t)=fexp(-Tr)-T°A°[z+(l-z)H(r)]Cn_](z,r)dr.
0
This, on differentiating with respect to t, yields
-TC (z,t)+Cp(z,t)=ToA[z+(1-2)A(t)]IC _4(z,t)  (2.2.6)

fer all n22 and teC(A). It is easily verified that (2.2.6)
helds for n=1 also. Now adding (2.2.6) for n21 and using
(2.2.5) we get

STL6(2,t)-Co(2,t) J+[6" (2,8)-C(2,t) 1=T°A[2+(1-2)(t)16(z,1)

aalaia




P

and since
Cb(z,t)=-TCo(z,t)
we have
G'(z,t)=[(T+T°A°)+(2-1){1-H(t)}T°A°JG(z,t)
for all teC(H). Thus we have (2.2.3). Equation (2.2.4) is

obvious.

Remark: The system of differential equations (2.2.3) with
the initial condition (2.2.4) shall be called the Basic

System of Differential Equations for the PH/G/« queue.

Note that the basic system of differential equations for
the PH/G/~ queue is of the form
Y'(t)=[A+R(t)]Y(t), (2.2.7)
where A is a constant matrix and R(t)-»0 as t»=. Regarding

the system (2.2.7) we have the following

Proposition 2.2.8:

a) If R(+) is Riemann-integrable in [O,to], then there
exists a unique solution of (2.2.7) in [O,to] for any given
initial condition.

b) If s||R(t)||dr<= and if all the solutions of
0

Y'(t)=AY(t) are bounded, then all the solutions of (2.2.7)

are bounded in [0,=).

Proof: For Part (a) we refer the reader to Bellman [1],
page 165. Part (b) due to Dini-Hukuhara may be found in
cesari (2. s 37, 3.3 (110 ).




We can apply the above Proposition to the system

(2.2.3), (2.2.4) to obtain

Theorem 2.2.9: The basic system of differential equations

for the PH/G/~ queue given by (2.2.3) and (2.2.4) has a
unique solution in [0,=). Further this solution is bounded

in [0,=).

Proof: That the second condition of Part (b) of Proposition
2.2.8 is satisfied by the system (2.2.3) follows from the
fact that exp[(T+T°A°)t] is stochastic for any t20. The
rest of the conditions in Proposition 2.2.8 follow easily

from our assumption that
p=r{1-A(t)}dt<=.
0
The Theorem now follows directly by specializing Proposition

2.2.8 to the system (2.2.3), (2.2.4).

Remark: In the special case of the M/G/~ queue, the basic
system of differential equations reduces to a single

equation

%f G(z,t)=(z-1){1-H(t)}rG(z,t)
G(z,0)=1,

for, in this case T=-a, T°=2 and u]=1. Under the assumption

u=6{1-ﬁ(t)}dt<w, we have

t
G(z.t)=exp{-k5{1-Fl(r)}dr(l-z)}

showing that X(t) has a Poisson distribution with parameter




t -
AS{1-H(t)}dr. The stationary distribution of the queue
0

length in this case is Poisson with parameter Au. An

alternate proof of these results can be found in Takacs [10].

2.3 A Discrete Example

We now consider the special case where ﬁ(-) is concen-
trated on a finite number of points O<tj <t,<...gt <=. To be
specific we assume

g 1=BO if t<t0 :
1-H(t)= B if o qstetys 21,000,k
0 if %

steo

k
where 1=Bo>s]>...>sk>0. In this case it is easily verified
that the solution to the basic system of differential

equations (2.2.3), (2.2.4) is given by

(exp[{(T+T°A°)+(z-1)T°A°}t] if tst,
expl {(T+T°A°)+(z-1)8,T°A°}(t-t,; 4)1-G(z,t; ;)

6(z,t)=(
if oty _gststy, i=1,...,k

Lexp[(T+T°A°) (t-t, )]-G(2,t,) if tat,

which is in the form of a product of matrix exponentials.

Also noting that
exp{(T+T°A°)t}~0 as tow,

Lim G(z,t)=eG(z,tk)
t-Hn
0
=0 M exp[{(T+T°A°)+(z-1)B.T°A°}(t.-t, ])]
j:k J J J=

where t_,=0 and the matrix product is taken in the order

j=kg j=k-],-o-,j=0.




The non-commutatiyity of the matrices in the products
above prevents any simplification and makes the above
"explicit" formulae worthless for computing purposes. The
above example also shows that in the general case one has no

hope of obtaining any useful explicit formulae.

2.4 Asymptotic Nature of the Basic System of Differential
Equations

Under the assumption u=;{1-ﬁ(t)}dt<°° we show in this
section that as t-« the uniqge solution G(z,t) to the basic
system of differential eqdations for the PH/G/= queue tends
to a 1imit G(z), a matrix whose rows are all identical. This
is obtained by applying the following classical result due to

Levinson.

Proposition 2.4.1: Consider the system of m linear

differential equations

t)
To— = [ReRle]1git) (2.4.2)

Assume that the Jordan Canonical form of the constant matrix
A is of the form diag(Bo,...,Bs), where the square matrices

Bj are such that

Bo=d1ag(u],...,ul); Re u:20, J=1,...52,




T TR v

Hotj L3
.= 1 SRR
BJ i H J
‘“z+j
— -
Assume
Re u£+j<-B<0 for j=1,...,s
and that
Slrs.(t)]|dt<e For 1,3%1 ;5.
g ™

Then there exist m linearly independent vectors x(k)(t);

k=1,...,m, each a solution of (2.4.2) such that as t-e,
.Z(k)(t)~eukt g(k); 5 S |
eBt 1(k)(t)+g; (ot i PESEEN 5

where Ag(k)=ukg(k); i (RS

Proof: The lengthy proof of this Proposition may be found

in Levinson [3], Theorem 3.

Theorem 2.4.3: Under the assumption u=/s{1-H(t)}dt<e, G(z,t),
0

the unique solution to the basic system of differential

equations (2.2.3), (2.2.4), converges as t+~ to a matrix

G(z) all whose rows are identical. Further G(1-)=0.

Proof: Since T+T°A° is the infinitesimal generator of an
irreducible continuous time Markov-Chain, (T+T°A°)e=0.
Further 0, as an eigenvalue of T+T°A°, has multiplicity 1.

Also any other eigenvalue of T+T°A° has negative real part.




In short T+T°A° satisfies the conditions for the matrix A in
Proposition 2.4.1. It may easily be verified that all other
conditions of Proposition 2.4.1 are satisfied by the system
of differential equations

ag(t)
at

= [(T+T°A°)+(z-1){1-A(t)IT°A%]g(t). (2.4.4)
By Proposition 2.4.1, the system (2.4.4) has m linearly
independent solutions g]('),...,gm(-) such that as t-=
g;(t)»e
eBtgk(t)+g; k#2245 .al
where 0>-g>Re Aj for every eigenvalue xj of T+T°A° for which
Re xj<0. Now every column of G(z,t) satisfies (2.4.4) whence
the i-th column of G(z,t) converges as t+= to ci(z)g where
ci(z) is a constant which depends on z only. Thus as to=,
G(z,t) converges to a matrix G(z) all whose rows are

identical.

Now we can write (2.2.3), (2.2.4) as
t 3
G(z,t)=I+s/[(T+T°A°)+(z-1){1-H(x)1}T°A°]G(z,)dT, t>0
0
and therefore

G(Z)=I+Z[(T+T°A°)+(Z-1){1-ﬁ(1)}T°A°]G(z,r)dr.

Now,

G(z)=0G(z)
=e+(z-1)eT°A°6{1-ﬁ(t)}G(z,r)dr (2.4.5)




Noting that G(1,t)=exp[(T+T°A°)t] is stochastic for every

120, we can apply the Monotone Convergence Theorem to show

that as z+1,

f{]-FI(T)}G(Z,T)dT_e_ 4+ ue.
. e

Thus from (2.4.5) it follows that as z+1, G(z)»o, i.e.,

G(1-)=0, and the proof is complete.

Remarks:
1. Note that the (i,j)-th entry of G(1-) is the stationary
probability that the phase of the arrival process is j.
Clearly this must be ej, for, 8 is the invariant probability
vector of the Markov Chain Q* governing the phases.

2. The result above also shows that the rows of G(z) define

a proper joint probability distribution.

The following Theorem is essentially a re-statement of

Theorem 2.4.3 in the terminology of probability theory.

Theorem 2.4.6: Under the assumption u=/s{1-H(t)}dr<=, the
0
process {(X(t),J(t)): t20} is ergodic and has a stationary

distribution independent of the initial conditions.

Proof: A trivial probabijlistic argument shows that even if
we assume that X(0)=k, J(0)=i for any k20, 1gigm, then we

would still get the same limit cj(z) obtained in Theorem

2.4.3 for the sum




» zoz"P[x(t)=n,J(t)=jlx(0)=k,J(0)-1]
Ee n=

whence the result.




CHAPTER III

MOMENTS OF THE QUEUE LENGTH

3.1 Introduction

In this Chapter we shall be concerned with obtaining
the moments of the queue length X(t). Letting N(t) denote
the number of arrivals in (0,t], we can easily see that
0<X(t)sN(t) a.s., and since all the moments of N(t) exist
[6], so do the moments of X(t). Let Hgk)(t) denote the
k-th factorial moment of X(t) under the assumption X(0)=0,
J(0)=i. That is,

w8 (e)=e0x K (£)[x(0)=0,3(0)=11, k21, 15igm,

where X(k)(t) denotes the factorial product X(t)[X(t)-1]...

[X(t)-k+1]. We also let g(k)(t) denote the m-vector whose
i-th entry is u{K)(t), kz1.

Applying the rules of Calculus "rather formally" to the

basic system of differential equations (2.2.3) and evaluating

k
—EF G(z,t)e » we easily obtain
3z z=1-

4w p)=(rerenc)n M (0)+01-R(e)1ToR%e

(3.1.1)

and for k32

e me—



4o Ry raronn)w R (o) ekr-fice) yTeney (K1) (e
(3.1.2)
:' 1) (0)=0.

The above systems of differential equations can easily be
solved numerically to obtain the first few moments of the
queue size. In Section 3.4 we shall present some sample
computations of the first four moments with as many as ten
phases.

The rigorous proof of (3.1.1) and (3.1.2) which involves
the application of a number of well-known theorems in real
analysis is presented in the next section. Section 3.3
contains a number of remarks on the numerical computation
of the probability distribution and the moments of the queue
length. Finally in Section 3.4 we present some sahple
computations of the ffrst four moments of the queue length

for models with as many as ten phases.

3.2 Moments of the Queue Length

We now state a few well-known results from real analysis
which we will need in the course of proving (3.1.1) and

{3.1.2).

Lemma 3.2.1: Let (q,B,$) be a measure space, and let

{x,: ze[a,b]}, where [a,b] is a finite closed interval of

dX
R], be integrable functions from Q to R1. If "E% exists on

dX
[a,b] and | d§|§Y where Y is integrable, then




S X_do=s ' dé for all ze[a,b].
Q Q

0

Proof: See p. 126, 3°, Loeve [4].

Proposition 3.2.2: Let (2,B,4) be a measure space and let

{Lz: ze[a,b]} be integrable functions from @ to R™. If for

&t g
all k>1, exists on [a,b] and <Y, where Y, is
g dz dz gl k
integrable, then

4K ¥y

ot X, de¢=s d¢, k21.

dz¥ @ “Z g dzf

Proof: This Proposition follows readily by repeated

application of Lemma 3.2.1 and mathematical induction.

Proposition 3.2.3: If f is Lebesgue integrable on [a,b] and

F(x)=ff(1)dr, xel[a,b], 1
a

then

a) F(-) is a continuous function of bounded variation
on [a,b]. :

b) F'(x)=f(x) a.e. on [a,b].

Proof: For Part (a) we refer the reader to Lemma 6, p. 87,

Royden [9]. Part (b) is Theorem 9, p. 89, Royden [9].
We are now ready to prove

Theorem 3.2.4: For all te[0,»), ]

t t
E(])(t)=(T+T°A°)6E(])(r)dr+£{1-ﬁ(t)}drl° (3.2.5)




and for all k22,

t t
g(k)(t)=(T+T°A°)ég(k)(T)d1+k6{1—ﬁ(r)}T°A°g(k'])(t)dr (3.2.6)

Proof: From (2.2.3) and (2.2.4) it follows easily that
t =
G(z,t)=I+s[(T+T°A°)+(z-1){1-H(7)}T°A°]G(z,T)dr,
0

whence

(k)(t)= i_ t °p°) 4 =1 _H opo d
M g [L(TeT°A) 4 (2 ){1-f(t)}T°A° G (2, )dre| (3.2.7)

9Z z=] -

For ze[0,1], Te[0,t], clearly,

0 __E G(Z,‘l’)g]
i

HA

&}

o

[-Pk
9
2 G(z,t
¢ 6(z )é]z

= u§k)(r)

A

32 =]-

e i

ECN(K) () 0 (0)=1]

A

erntk) (1) ]9(0)=11,

A

where NCK)(£)=N(t)IN(t)-1]...[N(t)-k+1]. The last inequality
in the above chain of inequalities is got by using the fact
that N (:)7a.s. Now, denoting E(N(k)(r)|J(0)=i] by

vgk)(t), we have

5 )
0 5/ vi ' (t)dr<e for every lgizm, k21.
0

Also for 0g<zgl, Ogtst,




k .
|13 C(T+T°A )+ (2=1) (1-A(2) }T°A° )G (2,7 )e] ||
9z

k
= | L(T+T°A®)+(2-1) {1-A(x)IT°A° 131 6(z,1)e
9z

-

+k{1~A(1)1T°A° 20— 6(z,1)e]|
92 |
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where, X(k)(t) is the vector whose i-th component is vgk)(t).
Now, in Proposition 3.2.2 set @=[0,t], B=Borel subsets of

[0,t], ¢=Lebesgue measure,

X, (2)=[(T+T°A°)+(z-1)(1-A(1)1IT°A°]G(z,)e

v = Tereas e reas D8 e el treas | &N o)
to obtain, using (3.2.7), that
(k)(t)=§ ch [(T+T°A°)+(2-1){1-A(7))T°A° ]G ) d
B Oa_Z_E 2- -H{t)} 16(z,7 g_l T,
z=1-

and the theorem follows.

Corollary 3.2.8:

a) For all k21, g(k)(-) is continuous and of bounded

variation in any finite interval [0,t].

b) We also have

l &M (o= (rerea )y (e)+1-R()1TeR%,  ase. |

E(])(0)=g

and for k>2

4wk )= (rarone)y () () akir-ce)meaen (K1 (t), ave.

E(k)(o)._._o_




Proof: This Corollary is an immediate consequence of

Theorem 3.2.4 and Proposition 3.2.3.

The above discussion completes the proof of (3.1.1) and
(3.1.2) which were derived heuristically at the beginning of

this Chapter. In a very easy way we can now prove

Theorem 3.2.9: Under the assumption n=s{1-H(t)}dt<=, for

0
any k>1 the vector of factorial moments g(k)(t) converges
as t+» to a (finite) vector all whose components are equal.

Further for any k21, g(k)(°) is bounded in [0,=).

Proof: Clearly it suffices to prove the existence and
finiteness of these limits. To this end note that (3.2.5)

implies

t
oul1) (£)=0T° S 11-A(1) I dr>u0T o as toe.
0

This shows that E(])(t) converges to a finite limit as t-e
and also (since £](°) is continuous in [0,=)) that E](‘) is
bounded in [0,»). Now as induction hypothesis assume that

the Theorem is true for k-1. From (3.2.6) we now have

t
gg(k)(t)=gT°A°6{'l-Fl(r)}y_(k-])('r)d'r,

and the above integral converges as t+» to a finite limit
since E(k'])(~) is bounded on [0,=). Now the boundedness of
gk(-) follows from its continuity. By mathematical induction,

the proof is complete.




——— , ——

An interesting special case of the PH/G/~ queue is the
one in which the PH-Renewal process describing arrivals is
stationary - i.e. where the initial phase is chosen according

to the vector 6. For this case we have the interesting

Theorem 3.2.10: Suppose the initial phase J(0) is chosen

according to the vector 6, i.e. the PH-Renewal process is
stationary. Then
t "
a) the mean system size at t is given by A/f{1-H(t)}dr.
0

b) if u=/s{1-H(t)}dt<=, then the mean of the steady
0

1

state distribution of the system size is Au where A~ ' is the

mean inter-arrival time.

Proof: Pre-multiplying (3.2.5) by o,

t
gg“)(t)=g'_|'_°(f){'|-l?|('r)}d‘r,

and the result in Part (a) follows by noting that gs-xgj°]

and T°=-Te. Part (b) now easily follows from Part (a).

Using the above theorem and Theorem 3.2.9 we immediately

obtain

Corollary 3.2.11: If u=/f{1-f(t)}dt<w, then
0

E(])(t)+xug as tow,

3.3 Some Remarks on Computational Methods

Except in the special case of Poisson arrivals, there
does not seem to be any hope of obtaining in closed form the

distribution of the system size or the moments thereof for

IR W P PRLNT et




the PH/G/~» queue. Nevertheless, all the systems of

differential equations above lend themselves readily to
computations using numerical methods.

For the purpose of computing the moments up to an index
k, it appears best to consider the km differential equations
given by (3.1.1) and (3.1.2) as forming a single system.
Using a general purpose inter-active software system called
DELSIM, due to Professor D. E. Lamb and available at the
University of Delaware Computing Center, we computed the
time-dependent solutions to the moment-vectors up to the
fourth moment for models involving as many as ten phases by
applying the Fifth-order Kutta-Merson method. Some of these
computations are presented in graphical form in the next
section. While the process times for these examples ranged
from one half to seven minutes, we point out that the DELSIM
system, due to its general nature, does not take into account
the nice structure of the system of differential equations at
hand. A program which takes into account the special
structure of the differential equations (3.1.1), (3.1.2)
could handle much larger examples and would also result in
considerable savings in computer time and storage.

Defining

9, (t)=6, (t)e, k20
we note that the i-th entry of gk(t) is given by

gki(t)=P[X(t)=kIX(0)=0,J(0)=1].
It is easily seen from (2.2.3) and (2.2.4) that

sl

PR S AP P v v oy,



4 g (t)=[THR(E)ToA Ig, (t)

(3.3.1)
go(0)=e

and for k1

e g, (£)=[T+A(£)T°A°Ig, (£)+{1-A(£)}T°Ag, (t)~
\ (2.3.2)
9.k(0)=9° f

-

The infinite system of differential equations above needs to
be truncated at a sufficiently large value of the index k
before any numerical method can be implemented to solve it.
It does not appear tractable to develop any optimal methods
for such truncation. In the absence of such criteria it
appears practical to truncate the system at kzAu+3c where o
is the standard deviation of the statijonary distribution.
Using such methods we are confident that the equations
(3.3.1), (3.3.2) can be solved for queues for which the
value of Ap is even moderately large. But as Au becomes
very large, say over 200, the systems of differential
equations above could become stiff and pose considerable
difficulty in solving them numerically. Further work along
these lines is under way and will be the subject matter of a

forthcoming paper.

3.4 Computational Examples

To illustrate the computations of the moments of the

queue length, we considered the following five PH-distribu-

tions for the inter-arrival times:




Exponential (50), (3.4.1)

E(10, 500), (3.4.2)
0.2E(5, 62.5)+0.8E(5, 1000), (3.4.3)
0.8E(2, 400)+0.2E(8, 100), (3.4.4)
0.5E(5, 156.25)+0.5E(5, 625), (3.4.5)

where E(n,a) denotes the Erlang distribution with density

aXx _n-1

n
f(x)=T%ﬁT il L

While each of these PH-distributions has the same mean 0.02,
the distributions are qualitatively very different as the

graphs of their density functions (Figures 1-7) show. The

variances of these distributions are respectively 4x10'4,

4 4 4 4

0.4x10" ", 1I1x10° ", 10.7x10" " and 2.528%10° ".
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For the service time we considered the following three

distributions each of which has mean 1:

Exponential (1), (3.4.6)
R(0,2) (3.4.7)

A discrete distribution which has mass 0.5 at
each of the points 0.5 and 1.5. (3.4.8)

Figures 8-11 give the graphs of the mean (NU1) and the
three central moments (NU2, NU3, NU4) respectively of the
queue length, plotted against time (X), for the five PH/G/=
queues each of which has the same service time distribution,
viz., Exponential (1), and which have as their respective
inter-arrival time distributions the five PH-distributions
given by (3.4.1) - (3.4.5). Figures 12-15 present the
graphs of the moments now under the assumption that the
service time distribution is R(0,2). Finally, Figures 16-19
present the graphs obtained under the assumption that the

service time has the two-point distribution given by (3.4.8).
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An examination of the graphs of the mean queue length
(NU1) given in Figures 8, 12 and 16 shows that (for fixed
service time distribution) each of the five PH-distributions
considered here results in almost the same value for the
mean queue length at every point x. The insensitivity of
even the time-dependent mean queue length to substantial
random variability in the arrival process may be deceptive.
An examination of the computed curves for the time-dependent
curves of the second, third and fourth central moments show
that the latter are all highly sensitive to variability in
the inter-arrival times. In fact, increased variability in
the latter manifests itself in the same qualitative order in
all the higher moments.

Although, for the initial conditions chosen in our
examples, the approach to "steady-state" is very rapid, the
higher values of the central moments can only be explained
by a more erratic behavior of the path functions. These
observations indicate that sole reliance on simple analytic
expressions for mean queue lengths (where these are
available) may lead to serious errors in the qualitative

interpretation of the behavior of stochastic models.




CHAPTER IV
THE PH/PH/~ QUEUE

4.1 Introduction

Consider the PH/G/~ queue and assume that the service
time distribution A(-) is also of phase type. Such a model
will be denoted by PH/PH/«=. In this Chapter we shall set up
the differential equations for this model indicating their
proofs briefly. In the course of our discussion we shall
also present an alternate proof of an interesting theorem on
the M/PH/«= queue due to M. F. Neuts and J. L. Jain [8].

To be specific let us assume that the service time
c.d.f. H(+) which is of Phase Type has a representation
(g,S) and consists of n phases. Onée again we assume that

B =0 and without l1oss of generality that the representation

n+l
(BsS) is so chosen that the PH-Renewal Process defined by it
is irreducible.

For the PH/PH/= queue we are interested in the random
variables Xj(t)=the number of customers in phase j of
service at time t+, j=1,...,n and J(t)=the phase of the

arrival process at time t+. We let, for k,20, t20, 1gi,jzgm,
Gij(k],“.,kn,t)=P[§(t)=j,X](t)=k],.",Xn(t)=kn|J(0)=i,

x](0)=...=xn(o)=c£] ; (4.1.1)




and denote the mxm matrix defined by these entries by

G(k],".,kn,t). For t20 and |2i|§]’ i=1,...,n we also define

the generating function

k kn
2,702 G(k],".,k

G(z1,u.,z st)= b z .

prt)= t).
'|=

(4.1.2)

n

In the sequel we shall simply write k and z respectively to
denote the vectors (kl""’kn) and (Z]""’Zn)’ and it will
be implicitly understood that kigo is an integer for

i=1,...,n and |z;[s1 for all i=1,...,n. We also let

Sr(t)={(u],...,u )z u;20, Zusst), tz0, rzl.

r
Further for gesr(t), gr(t,!,k) will denote the probability
of obtaining E] k] times,..., En kn times in r multinomial
trials each of which can result in any one of the n+l
mutually exclusive and collectively exhaustive events
E],...,En+] with the trials having the probabilities given

by the vectors

(Bexp[S(t-uj-..-u;)], 1-gexp[s(t-u]-.”-ui)]-g); L P

—_—

respectively. Note that gr(t,g,K), where kez<r, is the
conditional probability, given there are r arrivals in (0,t]
and these occur at Uy u1+u2,,..,u]+...+ur, that kj of these

customers are in phase j of service at time t+ for j=1,...,n

n
and the rest r-zkj depart in (0,t]. We also have
1




1 n
g (t,u,z} = I .z z.. 9. bt u.k)
kegr
r
= Il gexp[s(t-u]nxui)]-5+1-gexp[S(t u]-"aui)]-g
=1

-y

(4.1.3)
With these notations we are now ready to discuss the PH/PH/=

queue.

4.2 The Analysis of the PH/PH/» Queue

Lemma 4.2.1: For t>0,

m r
G(0,t)=exp(Tt)+ = /1 {jn exp(Tui)-T°Ai}-
r=1 Sr(t) i=1

exp[T(t-u1n"-ur)]gr(t,g,g)dg

and for k>0,
w r

G(k,t)= = I I exp(Tui)oT°A° ~exp[T(t-u1n"-ur)]
r=ke Sr(t) j=1

Proof: This Lemma is obtained by conditioning on r, the
number of arrivals in (0,t], and the arrival epochs Uqs
UptlUpsewesUqton b, and applying the Taw of total

probability.

Theorem 4.2.2: (Basic System of Differential Equations):

For txV,
2 G(z,t)=[(T+T°A°)+{gexp(St).(z-)}T°A°J6(z,t) (4.2.3)
and
6(z,0)=1 (4.2.4)




Proof: The above Theorem is obtained by using Lemma 4.2.1,
(4.1.2) and (4.1.3). We omit the details which are analogous

to those in the proof of Theorem 2.2.2,

By applying Proposition (2.2.8) to (4.2.3), (4.2.4) we

have

Theorem 4.2.5: The basic system of differential equations

for the PH/PH/~ queue given by (4.2.3), (4.2.4) has a unique

solution in [0,=). Further this solution is bounded in

[Oa°°)-

Using Levinson's Theorem quoted as Proposition 2.4.1,

we have

Theorem 4.2.6: As t+~, the solution G(z,t) to (4.2.3),

(4.2.4) converges to a matrix G(z) all whose rows are

identical. Also G(e')=o where e'=(1,...,1)eR".

This implies

Theorem 4.2.7: The process {}X](t),...,xn(t),d(t)): t;é}
is ergodic and has a stationary distribution independent of
the initial conditions. This stationary distribution is

given by G(z).

Before we proceed with the discussion of the moments,
we present the following interesting result on the M/PH/=

queue due to M. F. Neuts and J. L. Jain [8].




Theorem 4.2.8: Consider the M/PH/» queue (which is obtained

by setting a=1 and T=-x in the PH/PH/= model). Given
X](0)=...=Xn(0)=0, X](t),...,Xn(t) are independent for any
fixed t>0, and for j=1,...,n, Xj(t) has a Poisson distribu- !
tion with parameter A}gexp(Sr)gddr, where &y is the n-vector
whose j-th component ?s one and all other components are
zero. Also the process (X](t),...,Xn(t)) is ergodic, and in
the steady-state these r.v.s. are independent with Xj

following a Poisson distribution with parameter —Ags'lgj.

Proof: For the M/PH/~ queue we get from (4.2.3) and (4.2.4),

2 G(z,t)=A{gexp(St)-(z-e)}G(z,t)
G(z,0)=1.

It is easily verified that the solution to the above is

given by

n t
G(z,t)=n exp[—Mgexp(Sr)-g.dr-(l-z ﬂ
j=1 0 . 4

whence the theorem.

Remark: Note that -gS']gj=dexp(Sr)gjdr is the expected
time spent by a customer in phase j of service. In the
light of this fact, the values obtained for the parameters
of the Poisson distributions in the above theorem are very

intuitive.

We now return to the general discussion of the PH/PH/«

queue and define the factorial moments

_—




k k s GG, :
“gj)=E(x§ Y(£)[3(0)=1,%,(0)=...=X (0)=0), kz1, :;;::,

Also the vector
LT LT TR LT LA ) SRNR T 3

By differentiating (4.2.3) with respect to Z; and setting

z=e, we can obtain

Theorem 4.2.9: For t>0, 1gjgn,

g_f ‘E:(j])(t)=(T+T°A°)l‘L§])(t)+{§eStgj}l°
(4.2.10)
£§1)(0)=g
and for k32
%-: £§k)(t)=(T+T°A°)£§k)(t)+k{§_estgj}Tvo£§k-])(t)
(4.2.11)

£§k)(0)=9-

Further as t»=, for any kxT, 1gjgn, gék)(t) converges to a
finite vector all whose components are equal.

We conclude our discussion by presenting the following

Corollary 4.2.10: For 15jgn, as tow, Bél)(t) converges to a
1

vector each of whose components is equal to -AgS 'e., where

=J
A-] is the mean inter-arrival time given by x'1=-gj']g.

Remark: Noting that -gs']gj

customer in phase j of service, we see that the above result

is the expected time spent by a

is very intuitive.




e

Proof: From (4.2.10),

for, =-AaT”

The proof is complete by appealing to the last

Theorem 4.2.9.

statement of




B f.‘l’?'i\v';t
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